Acceleration of Composite Order Bilinear Pairing on Graphics Hardware

نویسندگان

  • Ye Zhang
  • Chun Jason Xue
  • Duncan S. Wong
  • Nikos Mamoulis
  • Siu-Ming Yiu
چکیده

Recently, composite-order bilinear pairing has been shown to be useful in many cryptographic constructions. However, it is time-costly to evaluate. This is because the composite order should be at least 1024bit and, hence, the elliptic curve group order n and base field become too large, rendering the bilinear pairing algorithm itself too slow to be practical (e.g., the Miller loop is Ω(n)). Thus, composite-order computation easily becomes the bottleneck of a cryptographic construction, especially, in the case where many pairings need to be evaluated at the same time. The existing solution to this problem that converts composite-order pairings to prime-order ones is only valid for certain constructions. In this paper, we leverage the huge number of threads available on Graphics Processing Units (GPUs) to speed up composite-order pairing computation. We investigate suitable SIMD algorithms for base field, extension field, elliptic curve and bilinear pairing computation as well as mapping these algorithms into GPUs with careful considerations. Experimental results show that our method achieves a record of 8.7ms per pairing on a 1024bit security level, which is a 20-fold speedup compared to state-of-the-art CPU implementation. This result also opens the road to adopting higher security levels and using rich-resource parallel platforms, which for example are available in cloud computing. In fact, we can achieve more than 24 times speedup on a 2048bit security level and a record of 7× 10−6 USD per pairing on the Amazon cloud computing environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardware Acceleration of the Tate Pairing in Characteristic Three

Although identity based cryptography offers many functional advantages over conventional public key alternatives, the computational costs are significantly greater. The core computational task is evaluation of a bilinear map, or pairing, over elliptic curves. In this paper we prototype and evaluate polynomial and normal basis field arithmetic on an FPGA device and use it to construct a hardware...

متن کامل

A Profitable Sub-prime Loan: Obtaining the Advantages of Composite Order in Prime-Order Bilinear Groups

Composite-order bilinear groups provide many structural features that are useful for both constructing cryptographic primitives and enabling security reductions. Despite these convenient features, however, composite-order bilinear groups are less desirable than prime-order bilinear groups for reasons of both efficiency and security. A recent line of work has therefore focused on translating the...

متن کامل

Beyond the Limitation of Prime-Order Bilinear Groups, and Round Optimal Blind Signatures

At Eurocrypt 2010, Freeman proposed a transformation from pairing-based schemes in composite-order bilinear groups to equivalent ones in prime-order bilinear groups. His transformation can be applied to pairing-based cryptosystems exploiting only one of two properties of composite-order bilinear groups: cancelling and projecting. At Asiacrypt 2010, Meiklejohn, Shacham, and Freeman showed that p...

متن کامل

On the (Im)possibility of Projecting Property in Prime-Order Setting

Projecting bilinear pairings have frequently been used for designing cryptosystems since they were first derived from composite order bilinear groups. There have been only a few studies on the (im)possibility of projecting bilinear pairings. Groth and Sahai showed that projecting bilinear pairings can be achieved in the prime-order group setting. They constructed both projecting asymmetric bili...

متن کامل

Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

We develop an abstract framework that encompasses the key properties of bilinear groups of composite order that are required to construct secure pairing-based cryptosystems, and we show how to use prime-order elliptic curve groups to construct bilinear groups with the same properties. In particular, we define a generalized version of the subgroup decision problem and give explicit constructions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011